Lessons Learned in ICFMP Project for Verification and Validation of Computer Models for Nuclear Plant Fire Safety Analysis

Dr. Monideep Dey

Fire Safety Engineering Consultancy

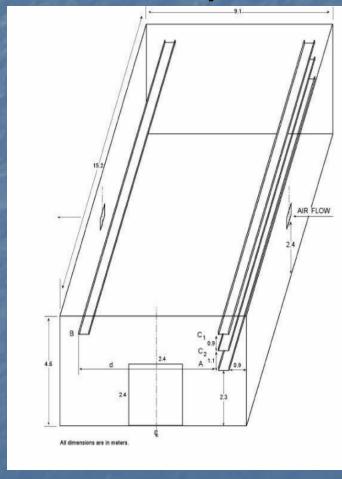
Presented at the 9th International Conference on Performance-Based Codes & Fire Safety Design Methods, June 20-22, 2012, Hong Kong

Objective of Presentation

- Present "lessons learned" in International Collaborative Fire Model Project (ICFMP)
- Recommend the "way forward" for performance-based codes and fire safety design methods
- Details of technical findings presented
 elsewhere e.g., Deytec 2009-05, Deytec 2010-01

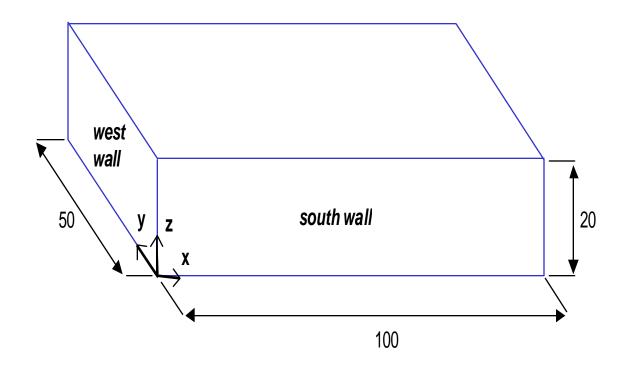
Background

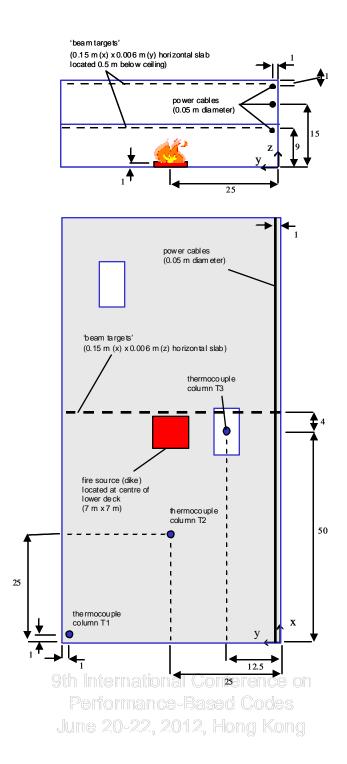
- Initiated performance-based (PB) fire safety codes & design in US in 1992
- Examination & development of new PB regulations & design methods
- Initiated & led the International Collaborative Fire Model Project from 1999-2006
- Deytec, Inc.— fire safety engineering consultancy
- United States delegate to ISO TC 92 Fire Safety Committee


International Collaborative Fire Model Project (ICFMP)

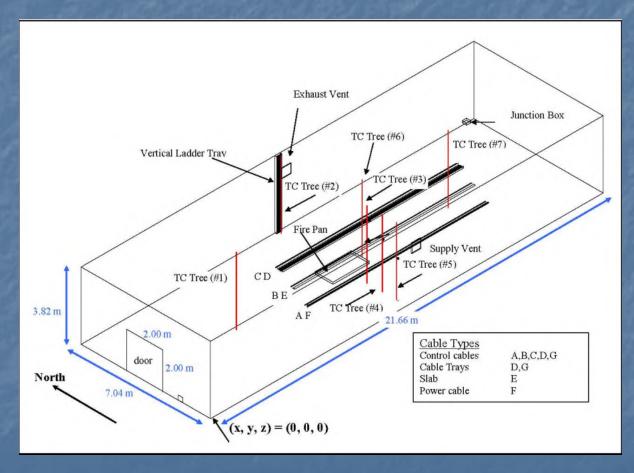
- Conducted 1999-2008 by USNRC
- Evaluate fire models for nuclear plant applications through 5 benchmark exercises (BE)
 - Code to Code
 - Code to experimental data
 - Simple to challenging scenarios

ICFMP Cont'd

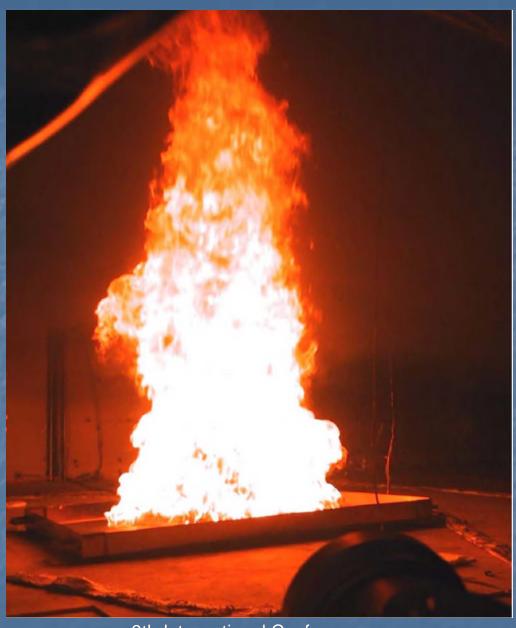

- Five countries participated, typically 7 organizations exercised fire models
 - Germany GRS, iBMB (COCOSYS, FDS, CFX, CFAST)
 - France IRSN, EdF, CTICM (FLAMME-S, MAGIC)
 - UK BRE (JASMINE, CFAST)
 - USA NRC, NIST (CFAST, FDS, FDTs)
 - Assigned as guest researcher at NIST
 - Analyst for NRC
- 10 organizations participated in peer review
- 12 international workshops over 10 years
- 5 ICFMP benchmark reports and summary report


ICFMP Benchmark Exercise No. 1 – Cable Tray Fires

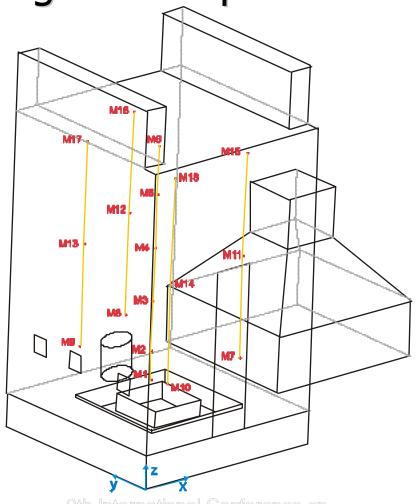
9th International Conference on Performance-Based Codes June 20-22, 2012, Hong Kong

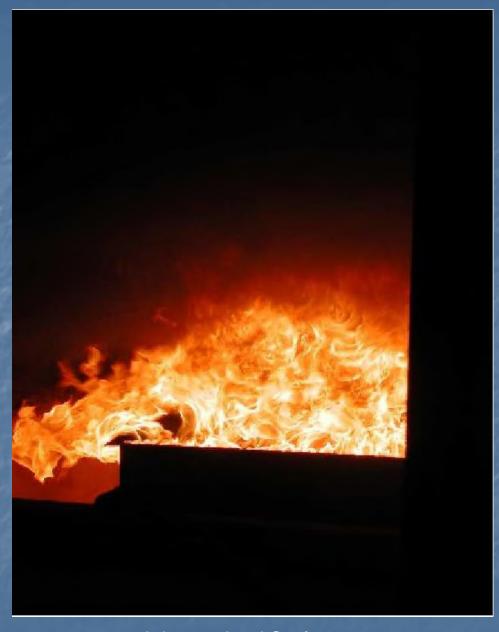

ICFMP Benchmark Exercise No. 2 – Pool Fires in Large Halls

Copyright
Deytec, Inc., 2012


ICFMP Benchmark Exercise No. 3 – Full Scale Compartment Fire Tests

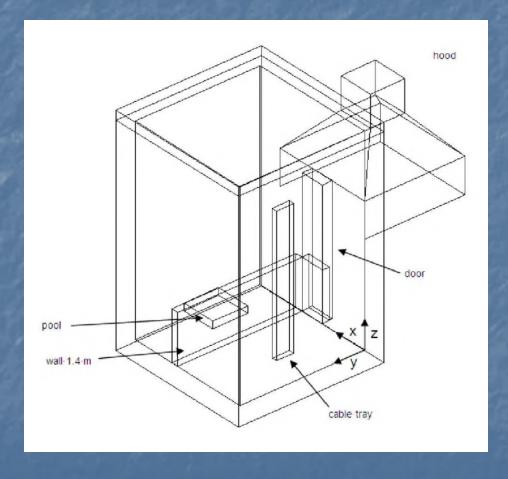
Copyright Deytec, Inc., 2012


9th International Conference on Performance-Based Codes June 20-22, 2012, Hong Kong


Copyright Deytec, Inc., 2012

9th International Conference on Performance-Based Codes June 20-22, 2012, Hong Kong

ICFMP Benchmark Exercise – No. 4 Large Fire Experiments


9th International Conference on Performance-Based Codes
June 20-22, 2012, Hong Kong

Copyright Deytec, Inc., 2012

9th International Conference on Performance-Based Codes June 20-22, 2012, Hong Kong

ICFMP Benchmark Exercise No. 5 — Pool Fires in a Trench

9th International Conference on Performance-Based Codes June 20-22, 2012, Hong Kong

Copyright Deytec, Inc., 2012

9th International Conference on Performance-Based Codes June 20-22, 2012, Hong Kong

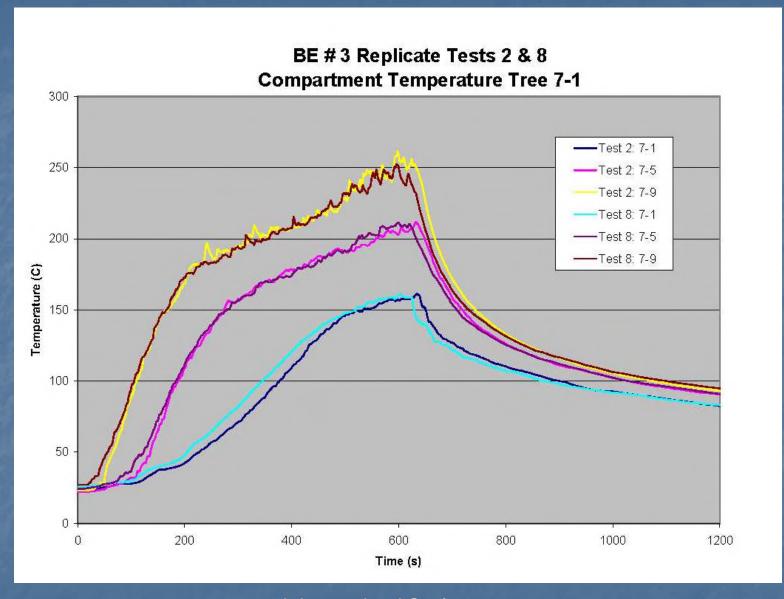
V&V Process to Determine Fire Model Predictive Errors

- ICFMP established to conduct "blind" benchmark exercises
- Need credibility of V&V process by determining true predictive errors
- Necessary to establish safety factors in performance-based designs

"Blind" vs "Open" Predictions

- In a priori (aka *blind)* modeler has no access to experimental data
- In a posteriori (aka open) modeler has access to the experimental data and measurements of predicted parameters
- Comparison of blind vs open calculations
 - Dalmarnock fire test project
 - Possible to match measured parameters by adjusting model input data

Bias in V&V Process


- Natural bias exists in open predictions
- Most fire model validations conducted a posteriori (open)
- Extent of bias presently unknown & currently being researched
- Need true predictive errors to establish safety factors in PB designs
- "Real World" fires PB designs

V&V Procedures in ICFMP

- Recognized need to conduct blind validations to determine "true" predictive errors essential to establishing safety factors
- Minimize debate about input parameter values through detailed specifications of the benchmark exercises

Challenges of *Blind* V&V Overcome in ICFMP

- Replication of experiments
- Conduct of tests according to test plan
- Uncertainty in model input data
- Sensitivity & uncertainty analysis
- Need to establish "optimal" prediction

Copyright Deytec, Inc., 2012

9th International Conference on Performance-Based Codes June 20-22, 2012, Hong Kong

Issues Identified in V&V Process

- Lack of agreement among participants on measurements & data needed as input to fire models being exercised;
- Lack of established formal procedure for submission & collection of *blind* calculations from participants.

Parameter Issues

- Heat Release Rate (HRR)
- Radiative Fraction
- Thermal Parameters of Compartment Boundary

Heat Release Rate (HRR)

- Knowledge of combustion process/need to input parameter to models
- Predominantly determines magnitude of fire effects
- Major source of uncertainty

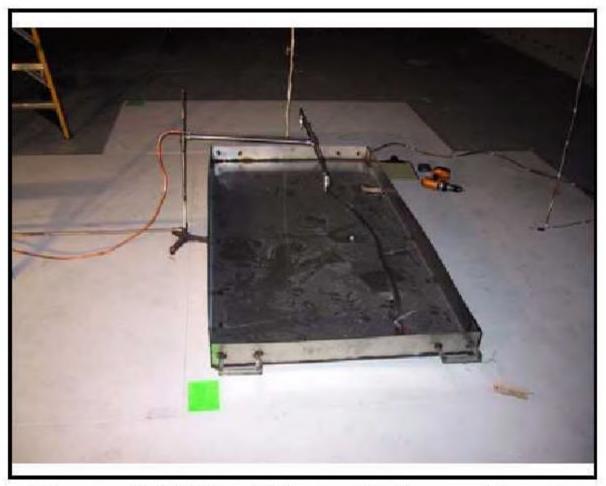


Figure 2.12 Fuel Pan with Spray Nozzle

Figure 3.3 Hot Gas Layer in Test 3

Table 3-1 Evolution of Heat Release Rate for Benchmark Exercise No. 3, Test 3

Release Date	July 2, 2003**	July 21, 2003	<u>September 9,</u> <u>2003</u>	<u>April 4,</u> <u>2004</u>	<u>June 2005</u>
HRR - from fuel flow	1050*	1050	1150	1150	1150
HRR - from calorimetry	1150	1260	1260	1260	1190

HRR specified in kW

**

Prior to release of experimental data

Radiative Fraction

- Radiative fraction of heat from fire must also be input to models
- Not measured for BE # 2, values of 0.4 used by some analysts (0.2 specified)
- Considerable effort made in BE # 3 to measure parameter but still disputed & adjusted by some analysts
- Similar issues in BE # 4 & 5

Table 3-2 Combustion Properties of the Test Fuels for Benchmark Exercise No. 3

Fuel	He (kJ/g) ¹	Combustion efficiency ²	Radiative fraction ³	Soot yield ²	CO yield ²	CO ₂ yield ²
Heptanes	45.0	1.0 ± 0.06	0.35 ± 0.08	$0.0149 \pm .0033$	< 0.006	3.03 ± 0.37
Toluene	40.3	0.76 ± 0.05	0.36 ± 0.08	0.194 ± 0.062	0.070 ± 0.016	2.53 ± 0.31

- 1. Report of Test Results, Galbraith Labs, March 2003. The expanded uncertainty is not reported but is typically 5 %.
- 2. The Global Combustion Behavior of 1 MW to 3 MW Hydrocarbon Spray Fires Burning in an Open Environment (Hamins, 2003d).
- 3. Hamins, Kashiwagi and Buch in Fire Resistance of Industrial Fluids (Eds.: Totten and Reichel), ASTM STP 1284, 1996

Thermal Properties of Compartment Boundary

- Not measured & controversial for Benchmark Exercise No. 2
 - Properties adjusted to reduce thermal inertia by 50 % by some analysts
- Considerable effort made in BE # 3 to measure parameters but still disputed & adjusted by some analysts

Table 3-6 Material and Optical Properties of Marinite.

K (W/m K)	$\alpha (m^2/s)^{*}$	c _p (J/kg K)	8 **
0.111	2.13 x 10 ⁻⁷	778	0.74±0.04
0.114	2.15×10^{-7}	795	
0.126	$2.17 \mathrm{x}10^{-7}$	871	
0.140	2.17×10^{-7}	965	
0.153	2.18×10^{-7}	1047	*
0.160	2.21×10^{-7}	1082	
0.175	$2.26 \mathrm{x}10^{-7}$	1160	
0.190	2.36x 10 ⁻⁷	1205	
0.198	2.42 x 10 ⁻⁷	1223	
	0.114 0.126 0.140 0.153 0.160 0.175 0.190	0.111 2.13×10^{-7} 0.114 2.15×10^{-7} 0.126 2.17×10^{-7} 0.140 2.17×10^{-7} 0.153 2.18×10^{-7} 0.160 2.21×10^{-7} 0.175 2.26×10^{-7} 0.190 2.36×10^{-7}	0.111 2.13×10^{-7} 778 0.114 2.15×10^{-7} 795 0.126 2.17×10^{-7} 871 0.140 2.17×10^{-7} 965 0.153 2.18×10^{-7} 1047 0.160 2.21×10^{-7} 1082 0.175 2.26×10^{-7} 1160 0.190 2.36×10^{-7} 1205

^{*} Taylor, R.E., Groot, H., and Ferrier, J., *Thermophysical Properties of PVC, PE and Marinite*, Report TPRL 2958, April 2003.

^{**} Hanssen, L., Report of Optical Test Data, March 2003.

Procedure Issues in ICFMP V&V

- Submission & collection of *blind* calculations were not conducted per an established formal procedure or standard
- Informal due to collegial nature of collaborative project & lack of standard
- Participants were permitted to categorize their calculations as *blind* or *open*.

Conclusion of *Blind* V&V

- Participants modified model input data based on their determination of the appropriate values
- Assumed this would still constitute as a blind calculation
- Blind & Open calculations could not be distinguished

Conclusion of *Blind* V&V – Cont'd

- Predictions by analysts differed:
 - Up to 45 % difference when same model used
 - Up to 40 % difference when models of same sophistication used
- ICFMP exercises failed as blind exercises

Recommendations for Fire Model V&V Standard

- Establish consensus on measurement methods for parameters needed as input to fire models
- Develop consensus on values for parameters input to fire models
- Establish procedure for conducting & ensuring that blind calculations are used to establish predictive model errors & safety margins
- Examine and include "third party validation" as an option for establishing true model errors

Performance-Based Codes: The Way Forward

- This forum shows PB design and codes being successfully deployed
- Caution needs to be exercised, and issues examined & addressed
- Distinguish sources of uncertainty
- Assembly of comments & current issues –
 Deytec, Inc. 2011-01
- Importance of applying reliable safety factors

Initiatives at ISO TC 92 Fire Safety Committee

- Presented work of ICFMP & Deytec, Inc. to ISO TC 92 in 2009 (Lancaster), 2010 (Paris), and 2011 (Ottawa)
- Presently serving as United States
 Delegate to ISO TC 92/SC4
- Revisions to fire safety engineering guidelines planned by ISO TC 92

Initiatives at ISO TC 92 Fire Safety Committee — Cont'd

- Issues being discussed:
 - V&V process improvement (ISO 16730:2007)
 - Safety factors
 - Design scenarios
 - Risk applications
 - Integration of fire safety engineering guidelines
- Recommend involvement in ISO through national bodies

Questions

Questions and discussion welcome:

deytec@frontiernet.net

www.deytecinc.com

Thank you.